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Abstract

In this study, free vibration analysis of a rotating, double tapered Timoshenko beam featuring coupling between flap-
wise bending and torsional vibrations is performed. At the beginning of the study, kinetic and potential energy expressions
of a rotating Timoshenko beam having single cross-sectional symmetry are derived in a detailed way by using several
explanatory tables and figures. In the following section, Hamilton’s principle is applied to the derived energy expressions
to obtain the governing differential equations of motion. The parameters for the hub radius, rotational speed, rotary iner-
tia, shear deformation, slenderness ratio, bending–torsion coupling and taper ratio are incorporated into the equations of
motion. In the solution part, an efficient mathematical technique, called the differential transform method (DTM), is used
to solve the governing differential equations of motion. Using the computer package, Mathematica, the mode shapes are
plotted, the effects of the incorporated parameters on the natural frequencies are investigated. The calculated results are
tabulated in several tables and plotted in several graphics.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

When the cross-sections of an isotropic and homogeneous beam have two symmetry axes, the shear center
and the centroid are coincident. As a result, bending vibrations are not coupled with the torsional vibration.
However, when the cross-sections have only one symmetry axis, the shear center and the centroid do not coin-
cide and the bending vibration that occurs in the plane perpendicular to the symmetry axis is coupled with the
torsional vibration.
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Nomenclature

A cross-sectional area
b0 beam breadth at the root section
cb breadth taper ratio
ch height taper ratio
e distance between the centroid of the cross-section and the elastic axis
E Young’s modulus
G shear modulus
GJ torsional rigidity
h0 beam height at the root section
~i;~j;~k unit vectors in the x, y and z directions
Iy Second moment of inertia about the y-axis
Ia mass moment of inertia per unit length about the elastic axis
J torsional rigidity constant
k shear correction factor
kAG shear rigidity
L beam length
P reference point after deformation
P0 reference point before deformation
r inverse of the slenderness ratio S
~r0 position vector of point P0

~r1 position vector of point P

R hub radius
S slenderness ratio
t time
T(x) centrifugal forceeT dimensionless centrifugal force
u0 axial displacement due to the centrifugal force, T(x)
Ubt bending–torsion potential energy
Us shear potential energy
Vx, Vy, Vz velocity components of point P

W[k], u[k], w[k] transformed functions
w flapwise bending displacement
x longitudinal coordinate
�x longitudinal coordinate parameter
x0, y0, z0 coordinates of point P0

x1, y1, z1 coordinates of point P

d hub radius parameter
dW virtual work of the nonconservative forces
c shear angle
e0 uniform strain due to the centrifugal force, T(x)
eij classical strain tensor
exx axial strain
egg, enn transverse normal strains
g sectional coordinate of P0 corresponding to major principal axis on the elastic axis
l natural frequency parameter
n sectional coordinate of P0 normal to g-axis
q density of the beam material
qA mass per unit length
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w torsion angle
u rotation angle due to bending
x circular natural frequency
X constant rotational speed
X rotational speed parameter
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Several engineering components, such as blades in turbines, compressors, propellers or helicopter rotors,
usually have non-coincident elastic and inertial axes, which are respectively the shear centers and the loci
of centroids of the cross-sections. Therefore, the determination of the dynamic characteristics of rotating cou-
pled beams is of great importance in the design of such components. As a result, free and forced vibration
characteristics of bending–torsion coupled beams have been an interesting area for many researchers. Houbolt
and Brooks [1] derived the equations of motion of a cantilever Euler–Bernoulli beam in coupled bending–
bending–torsion vibration motion by including the rotation effects. Bishop and Price [2] studied the coupled
bending–torsion vibration of the Timoshenko beams without including the warping stiffness. Subrahmanyam
et al. [3] presented natural frequencies and modal shapes of a rotating blade of asymmetrical aerofoil cross-
section with allowance for shear deflection and rotary inertia. Hallauer and Liu [4] and Friberg [5] derived
the exact dynamic stiffness matrix for a bending–torsion coupled Euler–Bernoulli beam with the warping stiff-
ness ignored. Dokumaci [6] derived the exact analytical expressions for the solution of the bending–torsion
equations without the warping effect. Bishop et al. [7], extended the study of Dokumaci by including the warp-
ing effect. Karadag [8,9] investigated the dynamic characteristics of rotating and nonrotating practical bladed
discs by taking blade shear center effects into account. Banerjee and Williams [10,11] derived the analytical
expressions for the coupled bending–torsion dynamic stiffness matrix of a Timoshenko beam excluding the
warping stiffness effect. Banerjee et al. [12] recast the study of Bishop et al. [7], by using the dynamic stiffness
matrix. Eslimy-Isfahany et al. [13] studied the response of a bending–torsion coupled beam to deterministic
and random loads. Bercin and Tanaka [14], included the effects of warping, shear deformation and rotary iner-
tia in their study of coupled flexural–torsional vibrations of beams having single axis of symmetry. Hashemi
and Richard [15] presented a new dynamic finite element for the bending–torsion coupled Euler–Bernoulli
beams with the warping stiffness omitted. Sabuncu and Evran [16,17], studied the dynamic stability of an
asymmetric cross-section rotating Timoshenko beam with and without pretwist.

In this study, which is an extension of the authors’ previous works [18–22], free vibration analysis of a dou-
ble tapered, rotating, cantilever Timoshenko beam featuring coupling between flapwise bending and torsional
vibrations is performed. At the beginning of the study, expressions for both the kinetic and the potential ener-
gies are derived in a detailed way by using explanatory tables and figures. In the next step, the governing dif-
ferential equations of motion are obtained applying the Hamilton’s principle. In the solution part, the
equations of motion, including the parameters for the hub radius, rotational speed, rotary inertia, shear defor-
mation, slenderness ratio, bending–torsion coupling and taper ratios, are solved using an efficient mathemat-
ical technique, called the differential transform method (DTM). Finally, using the computer package,
Mathematica, the natural frequencies are calculated, the mode shapes are plotted and effects of the parame-
ters, mentioned above, are investigated. Unfortunately, a suitable example that studies the rotating, double
tapered, coupled Timoshenko beam model has not been solved by any of the studies in open literature so
far. Therefore, this beam is modeled in the finite element program, ABAQUS in order to validate the calcu-
lated results of this study. Additionally, some examples that study simpler Timoshenko beam models are
found in open literature and solved in order to make comparisons. Consequently, it is observed that there
is a good agreement between the results.

Partial differential equations are often used to describe engineering problems whose closed form solutions
are very difficult to establish in many cases. Therefore, approximate numerical methods, i.e. finite element,
finite difference, boundary element methods, etc. are often preferred. However, in spite of the advantages of
these on hand methods and the computer codes that are based on them, closed form solutions are more attrac-
tive due to their implementation of the physics of the problem and their convenience for parametric studies.
Moreover, closed form solutions have the capability and facility to solve inverse problem of determining
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and designing the geometry and characteristics of an engineering system and to achieve a prescribed behaviour
of the system. Considering the advantages of the closed form solutions mentioned above, the differential trans-
form method is introduced in this study as the solution method. DTM was first introduced by Zhou [23] to
solve both linear and nonlinear initial value problems in electric circuit analysis. The method can deal with
nonlinear problems so Chiou and Tzeng [24] applied the Taylor transform to solve nonlinear vibration prob-
lems. Additionally, the method may be used to solve both ordinary and partial differential equations. Thus,
Jang et al. [25] applied the two-dimensional differential transform method to the solution of partial differential
equations. Abdel and Hassan [26] adopted the differential transform method to solve some eigenvalue prob-
lems. Since previous studies have shown this method to be an efficient tool, in recent years it has been applied
to solve boundary value problems for integro-differential equations [27], differential–difference equations [28],
aeroelasticity problems [29,30], and many other linear–nonlinear problems which are very important in mod-
elling many phenomena in viscoelasticity, fluid mechanics, biology, chemistry, acoustics, control theory, etc.
Besides the variety of the problems to which DTM may be applied, its simplicity and accuracy in calculating
the natural frequencies and plotting the mode shapes makes this method outstanding among many other
methods.
2. Beam configuration

The governing differential equations of motion are derived for the bending–torsion coupled free vibration
of a rotating, double tapered, cantilever Timoshenko beam represented by Fig. 1. Here, a cantilever beam of
length L, which is fixed at point O to a rigid hub, is shown. The hub has the radius R and rotates at a constant
rotational speed, X. The beam tapers linearly from a height h0 at the root to h at the free end in the xz plane
and from a breadth b0 to b in the xy plane. The cross-sectional view and the associated dimensions at the root
section (b0 = 30 cm, h0 = 10 cm) are introduced in Fig. 2a. The side and the top views of the beam are shown
in Fig. 2b and c, respectively. As it is seen in Fig. 2a, the cross-section of the beam is symmetric only about one
axis, the y-axis. Therefore as mentioned in the Section 1, the mass and elastic axes of the beam, which are
respectively the loci of centroids and shear centers of the cross-sections, are separated by a distance e, as
shown in Fig. 1 and the flapwise bending vibration is coupled with the torsional vibration.
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Fig. 1. Configuration of a double tapered, rotating, cantilever Timoshenko beam featuring bending–torsion coupling.
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Fig. 2. (a) Cross-sectional view, (b) side view and (c) top view of the double tapered Timoshenko beam with cross-section having one
symmetry axis.
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The following assumptions are made in this study,

(a) The flapwise bending displacement and the torsion angle of the beam are small.
(b) The planar cross-sections that are initially perpendicular to the neutral axis of the beam remain plane,

but no longer perpendicular to the neutral axis during bending.
(c) The beam material is homogeneous and isotropic.

3. Derivation of the equations of motion

The cross-sectional and the side views of the bending–torsion deflections of a rotating uniform Timoshenko
beam are given in Fig. 3a and b, respectively. Here, the chosen reference point is represented by P0 before
deformation and by P after deformation.
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Fig. 3. (a) Cross-sectional view and (b) side view of the bending–torsion deflections of the reference point.
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3.1. Derivation of the potential energy expression

When Fig. 3a and b are considered, the coordinates of the reference point can be written as follows:

(a) Before deformation (coordinates of P0):
x0 ¼ Rþ x ð1aÞ
y0 ¼ g ð1bÞ
z0 ¼ n ð1cÞ
(b) After deformation (coordinates of P):
x1 ¼ Rþ xþ u0 � ðn cos wþ g sin wÞ sin u ð2aÞ

y1 ¼ g cos w� n sin w ð2bÞ

z1 ¼ wþ n cos wþ g sin w ð2cÞ
where x is the longitudinal coordinate, u0 is the axial displacement due to the centrifugal force, g and n are the
sectional coordinates of P0, w is the flapwise bending displacement, u is the rotation due to bending, c is the
shear angle and w is the torsion angle.The rotation due to bending, u, is small so it is assumed that sin u ffi u.
The torsion angle, w, is also small so sin w ffi w, but in order to investigate the torsional stability, the second
order terms of cosw are kept so it is assumed that cos w ffi 1� w2

2
. Using these assumptions, Eqs. (2a)–(2c) can

be rewritten as follows:
x1 ¼ Rþ xþ u0 � n 1� w2

2

� �
þ gw

� �
u ð3aÞ

y1 ¼ g 1� w2

2

� �
� nw ð3bÞ

z1 ¼ wþ n 1� w2

2

� �
þ gw ð3cÞ
Knowing that~r0 and~r1 are the position vectors of the reference point before and after deformation, respec-
tively, dr0

*
and dr1

*
can be given by
dr0
* ¼ ðdx0Þ~iþ ðdy0Þ~jþ ðdz0Þ~k ð4aÞ

dr1
* ¼ ðdx1Þ~iþ ðdy1Þ~jþ ðdz1Þ~k ð4bÞ
where~i,~j and ~k are the unit vectors in the x, y and z directions, respectively.
The components of dr0

*

and dr1

*

are expressed as follows:
dx0 ¼ dx ð5aÞ

dy0 ¼ dg ð5bÞ

dz0 ¼ dn ð5cÞ

dx1 ¼ 1þ u00 � n 1� w2

2

� �
þ gw

� �
u0 þ nww0 � gw0ð Þu

� �
dx� wudg� 1� w2

2

� �
udn ð6aÞ

dy1 ¼ �ðgww0 þ nw0Þdxþ 1� w2

2

� �
dg� wdn ð6bÞ

dz1 ¼ ðw0 � nww0 þ gw0Þdxþ wdgþ 1� w2

2

� �
dn ð6cÞ



568 O.O. Ozgumus, M.O. Kaya / International Journal of Engineering Science 45 (2007) 562–586
The classical strain tensor eij may be obtained using the equilibrium equation below [31]:
dr1

*

� dr1

*

�dr0

*

� dr0

*

¼ 2½ dx dg dn �½eij�
dx

dg

dn

8><>:
9>=>; ð7Þ2 3
where ½eij� ¼
exx exg exn

egx egg egn

enx eng enn

4 5.

Substituting Eqs. (5a)–(6c) into Eq. (7), the elements of the strain tensor eij are obtained as follows:
2cxx ¼ 1þ u00 � n 1� w2

2

� �
þ gw

� �
u0 þ ðnww0 � gw0Þu

� �2

þ ðgww0 þ nw0Þ2 þ ðw0 � nww0 þ w0gÞ2 � 1 ð8aÞ

2cxg ¼ � 1þ u00 � n 1� w2

2

� �
þ gw

� �
u0 þ ðnww0 � gw0Þu

� �
ðwuÞ

� ðgww0 þ nw0Þ 1� w2

2

� �
þ ðw0 � nww0 þ gw0Þw ð8bÞ

2cxn ¼ � 1þ u00 � n 1� w2

2

� �
þ gw

� �
u0 þ ðnww0 � gw0Þu

� �
1� w2

2

� �
u

þ ðgww0 þ nw0Þwþ ðw0 � nww0 þ gw0Þ 1� w2

2

� �
ð8cÞ
In this study cxx, cxg and cxn are used in the calculations because as noted by Hodges and Dowell [32], for
long slender beams, the axial strain exx is dominant over the transverse normal strains, egg and enn. Addition-
ally, the shear strain egn is two order smaller than the other shear strains, exg and exn.

In order to obtain simpler expressions for the strain components, higher order terms must be neglected so
an order of magnitude analysis is performed by using the ordering scheme, taken from Hodges and Dowell
[32] and introduced in Table A1 in the Appendix A. The Euler–Bernoulli Beam Theory is used by Hodges
and Dowell [32] and in the present study, their formulation is modified for a Timoshenko beam and a new
expression, c = w 0 � u = O(e2), is added to their ordering scheme as a contribution to the literature. Using
Table A1 and Eqs. (8a)–(8c), the following simplified strain expressions are obtained:
exx ¼ u00 � nu0 þ 1

2
ðw0Þ2 þ 1

2
ðg2 þ n2Þðw0Þ2 ð9aÞ

cxg ¼ �nw0 ð9bÞ
cxn ¼ w0 � uþ gw0 ð9cÞ
The expression for the bending–torsion potential energy, Ubt, is given by
U bt ¼
1

2

Z L

0

Z Z
A

Ee2
xxdgdn

� �
dx ð10Þ
where A is the cross-sectional area and E is the Young’s modulus.
Substituting Eq. (9a) into Eq. (10), the following expression is obtained
U bt ¼
1

2

Z L

0

Z Z
A

E u00 � nu0 þ 1

2
ðw0Þ2 þ 1

2
ðg2 þ n2Þðw0Þ2

� �2

dgdn

 !
dx ð11Þ
Taking integration over the blade cross-section and referring to the definitions given by Table A2 in the
Appendix A, the following potential energy expression is obtained for bending–torsion
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Ubt ¼
1

2

Z L

0

EAðu00Þ
2dxþ 1

2

Z L

0

EIyðu0Þ2dxþ 1

2

Z L

0

EAu00ðw0Þ
2dxþ 1

2

Z L

0

Ia
u00
q
ðw0Þ2dx ð12Þ
where Ia is the mass moment of inertia per unit length about the elastic axis and Iy is the second moment of
inertia about the y-axis.

The uniform strain e0 and the associated axial displacement u0 due to the centrifugal force T(x) is given by
u00ðxÞ ¼ e0ðxÞ ¼
T ðxÞ
EA

ð13Þ
where the centrifugal force is expressed as follows:
T ðxÞ ¼
Z L

x
qAX2ðRþ xÞdx ð14Þ
where qA is the mass per unit length.
Substituting Eqs. (13) and (14) into Eq. (12) and noting that the 1

2

R L
0

T 2ðxÞ
EA dx term is constant and will be

denoted by C1, the final form of the bending–torsion potential energy is obtained as follows:
Ubt ¼
1

2

Z L

0

EIyðu0Þ2dxþ 1

2

Z L

0

T ðw0Þ2 þ Ia

qA
ðw0Þ2

� �
dxþ C1 ð15Þ
The expression for the shear potential energy, Us, is given by
U s ¼
1

2

Z L

0

Z Z
A

G c2
xg þ c2

xn

� 	
dgdn

� �
dx ð16Þ
where G is the shear modulus.
Substituting Eqs. (9b) and (9c) into Eq. (16), the following expression is obtained for the shear potential

energy
U s ¼
1

2

Z L

0

Z Z
A

G n2ðw0Þ2 þ ðw0 � uþ gw0Þ2
h i

dgdn

� �
dx ð17Þ
Referring to the definitions given by Table A2, Eq. (17) can be rewritten as follows:
U s ¼
1

2

Z L

0

fkAGðw0 � uÞ2dxþ GJðw0Þ2gdx ð18Þ
where k is the shear correction factor, kAG is the shear rigidity and GJ is the torsional rigidity of the beam
cross-section.

Summing Eqs. (15) and (18), the total potential energy expression is given by
U ¼ 1

2

Z L

0

EIyðu0Þ2 þ T ðw0Þ2 þ Ia

qA
ðw0Þ2

� �
þ kAGðw0 � uÞ2 þ GJðw0Þ2 þ C1

� �
dx

� �
ð19Þ
3.2. Derivation of the kinetic energy expression

The velocity vector of point P is expressed as follows:
~V ¼ o~r
ot
þ X~k �~r ð20Þ
where
~r ¼ x1
~iþ y1

~jþ z1
~k ð21Þ
Substituting Eq. (21) into Eq. (20), the velocity vector expression can be given by
~V ¼ ð _x1 � Xy1Þ~iþ ð _y1 þ Xx1Þ~jþ _z1
~k ð22Þ
where _x, _y and _z are the derivatives of the coordinates with respect to time, t.
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Substituting Eqs. (3a)–(3c) into Eq. (22) and applying the ordering scheme given by Table A1, the velocity
components are obtained as follows:
V x ¼ � n 1� w2

2

� �
þ gw

� �
_uþ ðnw _w� g _wÞu� g 1� w2

2

� �
� nw

� �
X ð23aÞ

V y ¼ �ðgwþ nÞ _wþ Rþ xþ u0 � n 1� w2

2

� �
þ gw

� �
u

� �
X ð23bÞ

V z ¼ _wþ ðg� nwÞ _w ð23cÞ
The kinetic energy expression is given by
I ¼ 1

2

Z L

0

Z Z
A

q V 2
x þ V 2

y þ V 2
z

� 	
dgdn

� �
dx ð24Þ
Substituting Eqs. (23a)–(23c) into Eq. (24) and referring to the definitions given by Table A3 in Appendix
A, the following kinetic energy expression is obtained.
I ¼ 1

2

Z L

0

qA _w2 þ qIy X2u2 þ _u2 þ 2Xðu _w� _uwÞ
h i

þ Ia
_w2 þ qðIy � IzÞX2w2

n
þ2qI zXðu _wþ _uwÞ þ 2qAe _w _w� ðRþ xÞX2wu

h io
dx ð25Þ
3.3. Governing differential equations of motion

The governing differential equations of motion and the associated boundary conditions are obtained by
applying the Hamilton’s principle, given below, to Eqs. (19) and (25):
Z t2

t1

dðU � I� W Þdt ¼ 0 ð26Þ
In this study, undamped, free vibration analysis is performed so variation of the virtual work done by the non-
conservative forces, dW, in Eq. (26) is zero. Therefore, variation of the kinetic and potential energy expres-
sions are taken and substituted into Eq. (26).

Using variational principles, the differential equations of motions for a rotating, nonuniform Timoshenko
beam with bending–torsion coupling are derived as follows:
qA
o

2w
ot2
þqAe

o
2w
ot2
� o

ox
T

ow
ox

� �
� o

ox
kAG

ow
ox
�u

� �� �
¼ 0 ð27aÞ

qIy
o2u
ot2
�qIyX

2u� o

ox
EIy

ou
ox

� �
� kAG

ow
ox
�u

� �
� 2qIyX

ow
ot
þqAeX2ðRþ xÞw¼ 0 ð27bÞ

Ia
o2w
ot2
þqAe

o2w
ot2
�qðIy � I zÞX2w� o

ox
GJ

ow
ox

� �
� o

ox
TIa

qA
ow
ox

� �
þ 2qIyX

ou
ot
þqAeX2ðRþ xÞu¼ 0 ð27cÞ
Neglecting the Coriolis terms, Eqs. (27a)–(27c) reduce to the following equations:
qA
o2w
ot2
þ qAe

o2w
ot2
� o

ox
T

ow
ox

� �
� o

ox
kAG

ow
ox
� u

� �� �
¼ 0 ð28aÞ

qIy
o

2u
ot2
� qIyX

2u� o

ox
EIy

ou
ox

� �
� kAG

ow
ox
� u

� �
þ qAeX2ðRþ xÞw ¼ 0 ð28bÞ

Ia
o2w
ot2
þ qAe

o2w
ot2
� qðIy � IzÞX2w� o

ox
GJ

ow
ox

� �
� o

ox
TIa

qA
ow
ox

� �
þ qAeX2ðRþ xÞu ¼ 0 ð28cÞ
Here, w is the flapwise bending displacement, u is the rotation due to bending and w is the torsion angle.
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The term, qIyX
2u, which appears in Eq. (28b) as a result of our derivations, can be important when the

constant rotational speed, X, is high. However, it is not taken into account by some authors [33,34]. The phys-
ical description of this term is that as a result of the bending deformation, the elements that are symmetrically
placed with respect to the mid-plane of the beam cross-section have different radii which makes these elements
experience different centrifugal force values although the net centrifugal force is independent of the sectional
rotation. Thus, a moment that has the value of qIyX

2u appears [35].
Additionally, after the application of the Hamilton’s principle, the boundary conditions are obtained as

follows:

• The geometric boundary conditions at the cantilever end, x = 0, of the Timoshenko beam,
wð0; tÞ ¼ uð0; tÞ ¼ wð0; tÞ ¼ 0 ð29aÞ
• The natural boundary conditions at the free end, x = L, of the Timoshenko beam,
Shear force: Tw0 þ kAGðw0 � uÞ ¼ 0 ð29bÞ
Bending moment: EIyu

0 ¼ 0 ð29cÞ
Torsion: GJw0 ¼ 0 ð29dÞ
The boundary conditions expressed by Eqs. (29b)–(29d) can be written in a simpler form by noting that the
centrifugal force is zero at the free end of the beam, T(L) = 0.
w0 � u ¼ 0 ð30aÞ
u0 ¼ 0 ð30bÞ
w0 ¼ 0 ð30cÞ
4. Vibration analysis

4.1. Harmonic motion assumption

In order to investigate the undamped free vibration of the beam model considered in this study, a sinusoidal
variation of w(x, t), w(x, t) and u(x, t) with a circular natural frequency, x, is assumed and the functions are
approximated as
wðx; tÞ ¼ �wðxÞeixt ð31aÞ

wðx; tÞ ¼ �wðxÞeixt ð31bÞ

uðx; tÞ ¼ �uðxÞeixt ð31cÞ
where �wðxÞ, �wðxÞ and �uðxÞ are the amplitudes of the sinusoidally varying flapwise bending displacement, angle
due to bending and torsional rotation.

Substituting Eqs. (31a)–(31c) into Eqs. (28a)–(28c) results in the following equations of motion.
x2qA�wþ x2qAe�wþ T �w0ð Þ0 þ kAGð�w0 � �uÞ½ �0 ¼ 0 ð32aÞ

qIyx
2 �uþ qIyX

2 �uþ ðEIy �u0Þ0 þ kAGð�w0 � �uÞ � qAeX2ðRþ xÞ�w ¼ 0 ð32bÞ

x2Ia
�wþ x2qAe�wþ qðIy � IzÞX2 �wþ GJ �w0


 �0 þ T
Ia

qA
�w0

� �0
� qAeX2ðRþ xÞ�u ¼ 0 ð32cÞ
where primes mean differentiation with respect to the longitudinal coordinate, x.
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4.2. Tapered beam assumptions and dimensionless parameters

In this study, the beam model tapers linearly in the xz and the xy planes with respect to the taper ratios, ch

and cb, respectively. Considering this tapered beam model, given in Figs. 1 and 2, the following assumptions
are made
b ¼ b0 1� cb
x
L

� 	
ð33aÞ

h ¼ h0 1� ch

x
L

� 	
ð33bÞ

e ¼ e0 1� cb

x
L

� 	
ð33cÞ

A ¼ A0 1� cb

x
L

� 	
1� ch

x
L

� 	
ð33dÞ

Iy ¼ Iy0 1� cb

x
L

� 	
1� ch

x
L

� 	3

ð33eÞ

J ¼ J 0 1� cb

x
L

� 	
1� ch

x
L

� 	3

ð33fÞ

Ia ¼ Ia0 1� cb

x
L

� 	
1� ch

x
L

� 	3

ð33gÞ
Here, the subscript ( )0 denotes the values at the root section of the tapered beam, cb and ch represent the
breadth and taper ratios, respectively. These taper ratios can be expressed as follows:
cb ¼ 1� b
b0

ð34aÞ

ch ¼ 1� h
h0

ð34bÞ
In order to make comparisons with the results in open literature, the following dimensionless parameters
are introduced:
�x ¼ x
L

d ¼ R
L

X2 ¼ qA0L4X2

EIy0

r2 ¼ 1

S2
¼ Iy0

A0L2
l2 ¼ qA0L4x2

EIy0

�e ¼ e0

L
~w ¼ �w

L
s2 ¼ EIy0

kA0GL2
r2 ¼ GJ 0

EIy0

r2
a ¼

Ia0

qA0L2

ð35Þ
Here, d is the hub radius parameter, X is the rotational speed parameter, l is the natural frequency parameter,
r is the inverse of the slenderness ratio S.

Using the related dimensionless parameters and the tapered beam assumptions, the centrifugal force, given
by Eq. (14), can be written in the dimensionless form as follows:
eT ¼ qX2L2

Z 1

�x
ðdþ �xÞd�x ¼ qX2L2A0

12
cb ch 3þ 4d� 4�x3d� 3�x4


 �
þ 4�x3 þ 6�x2d� 4� 6d

� 
�
þ2ð�x� 1Þ ch 3dð�xþ 1Þ þ 2ð�x2 þ �xþ 1Þ


 �� 
�
ð36Þ
where eT represents the dimensionless centrifugal force.
Substituting the dimensionless form of the centrifugal force, the dimensionless parameters and the tapered

beam assumptions into Eqs. (32a)–(32c), the dimensionless governing differential equations of motion are
obtained:
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d

d�x
d 1� �xð Þ þ 1� d cb þ chð Þ

2
1� �x2

 �

þ cbchd� cb � ch

3
1� �x3

 �

þ cbch

4
1� �x4

 ���

d~w
d�x

� �

þ l

X

� �2

1� cb�xð Þ 1� ch�xð Þ~wþ �e
l

X

� �2

1� cb�xð Þ2 1� ch�xð Þ�w

þ 1

sX

� �2
d

d�x
1� cb�xð Þ 1� ch�xð Þ d~w

d�x
� �u

� �� �
¼ 0 ð37aÞ

d

d�x
ð1� cb�xÞð1� ch�xÞ3 d�u

d�x

� �
þ r2ðl2 þ X2Þð1� cb�xÞð1� ch�xÞ3 �u� �eX2 dþ �xð Þ 1� cb�xð Þ2 1� ch�xð Þ�w

þ 1� cb�xð Þ 1� ch�xð Þ
s2

d~w
d�x
� �u

� �
¼ 0 ð37bÞ

d

d�x
d 1� �xð Þ þ 1� d cb þ chð Þ

2
1� �x2

 �

þ cbchd� cb � ch

3
1� �x3

 �

þ cbch

4
1� �x4

 �#

1� ch�xð Þ2 d~w
d�x

" )(

þ �e
l

raX

� �2

1� cb�xð Þ2 1� ch�xð Þ~w� �e
r2
a

dþ �xð Þ 1� cb�xð Þ2 1� ch�xð Þ�u

þ r
ra

� �2

þ l

X

� �2
" #

1� cb�xð Þ 1� ch�xð Þ3 �wþ r

raX

� �2

ð1� cb�xÞð1� ch�xÞ3 d�w
d�x

� �
¼ 0 ð37cÞ
4.3. The differential transform method

The differential transform method is a semi-analytic transformation technique based on the Taylor series
expansion and is a useful tool to obtain analytical solutions of the differential equations. In this method, cer-
tain transformation rules are applied and the governing differential equations and the boundary conditions of
the system are transformed into a set of algebraic equations in terms of the differential transforms of the ori-
ginal functions and the solution of these algebraic equations gives the desired solution of the problem. It is
different from high-order Taylor series method because Taylor series method requires symbolic computation
of the necessary derivatives of the data functions and is expensive for large orders. The differential transform
method is an iterative procedure to obtain analytic Taylor Series solutions of differential equations. The basic
definitions and the application procedure of this method can be introduced as follows:

Consider a function f(x) which is analytic in a domain D and let x = x0 represent any point in D. The func-
tion f(x) is then represented by a power series whose center is located at x0. The differential transform of the
function f(x) is given by
F ½k� ¼ 1

k!

dkf ðxÞ
dxk

� �
x¼x0

ð38Þ
where f(x) is the original function and F[k] is the transformed function.
The inverse transformation is defined as
f ðxÞ ¼
X1
k¼0

ðx� x0ÞkF ½k� ð39Þ
Combining Eqs. (38) and (39) gives
f ðxÞ ¼
X1
k¼0

ðx� x0Þk

k!

dkf ðxÞ
dxk

� �
x¼x0

ð40Þ
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Considering Eq. (40), once more it is noticed that the concept of differential transform is derived from Tay-
lor series expansion. However, the method does not evaluate the derivatives symbolically.

In actual applications, the function f(x) is expressed by a finite series and Eq. (40) can be written as
follows:
f ðxÞ ¼
Xm

k¼0

ðx� x0Þk

k!

dkf ðxÞ
dxk

� �
x¼x0

ð41Þ
which means that f ðxÞ ¼
P1

k¼mþ1
ðx�x0Þk

k!

dk f ðxÞ
dxk

� 	
x¼x0

is negligibly small. Here, the value of m depends on the con-
vergence rate of the natural frequencies.

Theorems that are frequently used in the transformation of the differential equations and the boundary
conditions are given by Tables A4 and A5, respectively, in the Appendix A.
4.4. Formulation with DTM

In the solution step, the differential transform method is applied to Eqs. (37a)–(37c) by using the theorems
introduced in Table A4 and the following expressions are obtained:
cbch

l

X

� �2

� ðk � 2Þðk þ 1Þ
4

" #
W ½k � 2� þ ðcb þ ch � dcbchÞ

ðk � 1Þðk þ 1Þ
3

� cbch

l

X

� �2
" #

W ½k � 1�

þ kðk þ 1Þ
2

2cbch

s2X2
þ dðcb þ chÞ � 1

� �
þ l

X

� �2
( )

W ½k� þ ðk þ 1Þ2 dþ cbch

s2X2

� �
W ½k þ 1�

þ 1

2
½1� dðcb þ chÞ� þ

1

3
ðdcbch � cb � chÞ þ

cbch

4
þ 1

s2X2

� �
ðk þ 1Þðk þ 2ÞW ½k þ 2�

� cbch

s2X2
ðk þ 1Þu½k � 1� þ ðcb þ chÞ

s2X2
ðk þ 1Þu½k� � ðk þ 1Þ

s2X2
u½k þ 1� þ �e

l

X

� �2

fchc2
bw½k � 3�

þ cbðcb þ 2chÞw½k � 2� � ð2cb þ chÞw½k � 1� þ w½k�g ¼ 0 ð42aÞ
cbchðk � 1Þ
s2

W ½k � 1� � k
s2
ðcb þ chÞW ½k� þ

ðk þ 1Þ
s2

W ½k þ 1� þ ½cbc3
hr2ðX2 þ l2Þ�u½k � 4�

� ðX2 þ l2Þr2c2
hð3cb þ chÞu½k � 3� þ cbc3

hðk þ 1Þðk � 2Þ � cbch

s2
þ 3ðX2 þ l2Þr2chðcb þ chÞ

h i
u½k � 2�

� c2
hðk � 1Þðk þ 1Þð3cb þ chÞ �

cb þ ch

s2
þ ðX2 þ l2Þr2ð3ch þ cbÞ

h i
u½k � 1�

þ 3chkðk þ 1Þðcb þ chÞ �
1

s2
þ ðX2 þ l2Þr2

� �
u½k� þ ð3ch þ cbÞðk þ 1Þ2u½k þ 1�

þ ðk þ 1Þðk þ 2Þu½k þ 2� þ �eX2fc2
bchw½k � 4� � cbðcb þ 2ch � cbchÞw½k � 3� þ ½ð2cb þ chÞ

� ðcb þ 2chÞd�w½k � 2� þ ð2cbdþ 2chd� 1Þw½k � 1� � dw½k�g ¼ 0 ð42bÞ
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l

raX

� �2

�e½�c2
bchW ½k � 3� þ cbðcb þ 2chÞW ½k � 2� � ð2cb þ chÞW ½k � 1� þ W ½k��

þ �e
r2
a

½c2
bchu½k � 4� � cbðcb þ 2ch � cbchdÞu½k � 3� þ ð2cb þ ch � c2

bd� 2cbchdÞu½k � 2�

þ ð2cbdþ chd� 1Þu½k � 1� � du½k�� � cbc3
h

r2

r2
a

þ l2

X2

� �
� ðk � 4Þðk þ 1Þ

4

� �
w½k � 4�

þ c2
h ðk � 3Þðk þ 1Þ 5

6
cb þ

1

3
ch � cbchd

� �
� r2

r2
a

þ l2

X2

� �
ð3cb þ chÞ

� �
w½k � 3�

þ
(
ðk � 2Þðk þ 1Þ � 11

12
cbch �

7

6
c2

h þ d
7

6
cbc2

h þ
1

2
c3

h

� �
þ r

raX

� �2

cbc3
h

" #

þ 3
r2

r2
a

þ l2

X2

� �
chðcb þ chÞ

)
w½k � 2�

þ 1

3
ðk � 1Þðk þ 1Þðcb þ 4chÞ �

r2

r2
a

þ l2

X2

� �
ðcb þ 3chÞ �

r

raX

� �2

ðk � 1Þðk þ 1Þc2
hð3cb þ chÞ

"

� 2

3
chð2cb þ 3chÞðk � 1Þðk þ 1Þd

�
w½k � 1� þ 1

2
kðk þ 1Þ

"
c2

h �
2

3
cbc2

h �
2

3
c3

h þ
1

2
cbc3

h � 1

� �

þ r2

r2
a

þ l2

X2

� �
þ d cb þ 5ch þ 2c2

h � cbc2
h � c3

h þ
1

3
cbc3

h

� �
þ 6

r

raX

� �2

ðcbch þ c2
hÞ
#
w½k�

þ ðk þ 1Þ2
"

ch

2

3
cb þ

2

3
ch �

1

2
cbch � 1

� �
þ d cbch þ c2

h �
2

3
cbc2

h � 2ch � 1

� �

� r

raX

� �2

ðcb þ 3chÞ
#
w½k þ 1� þ 1

2
� 1

3
ðcb þ chÞ þ

1

4
cbch þ d 1� 1

2
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��

þ 1

3
cbch

�
þ r

raX

� �2�
w½k þ 2� ð42cÞ
Here, u[k], W[k] and w[k] are the transformed functions of �u, ~w, �w, respectively.
Furthermore, applying the differential transform method to Eqs. (29a) and (30a)–(30c), the transformed

boundary conditions are obtained as follows:
at �x ¼ 0) u½0� ¼ W ½0� ¼ w½0� ¼ 0 ð43aÞ

at �x ¼ 1) ðk þ 1Þu½k þ 1� þ �e
l2

X2
ðk þ 1Þw½k þ 1� ¼ 0 ð43bÞ

X2r2 1þ l2

X2

� �
� 1

s2

� �
ðk þ 1ÞW ½k þ 1� � u½k� ¼ 0 ð43cÞ

r2

X2r2
a

 !
ðk þ 1Þw½k þ 1� � d

r2
a

�e
� �

ðk þ 1Þu½k þ 1� ¼ 0 ð43dÞ
Substituting the boundary conditions expressed in Eqs. (43a)–(43d) into Eqs. (42a)–(42c) and taking u[1] = c1,
W[1] = c2, w [1] = c3, the following expression is obtained
AðnÞj1 ðxÞc1 þ AðnÞj2 ðxÞc2 þ A nð Þ
j3 ðxÞc3 ¼ 0; j ¼ 1; 2; 3 ð44Þ
where c1, c2 and c3 are constants and AðnÞj1 ðxÞ;A
ðnÞ
j2 ðxÞ;A

ðnÞ
j3 ðxÞ are polynomials of x corresponding to n.

The matrix form of Eq. (44) can be given by
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AðnÞ11 ðxÞ AðnÞ12 ðxÞ AðnÞ13 ðxÞ
AðnÞ21 ðxÞ A nð Þ

22 ðxÞ AðnÞ23 xð Þ
AðnÞ31 ðxÞ A nð Þ

32 ðxÞ AðnÞ33 xð Þ

2664
3775

c1

c2

c3

8><>:
9>=>; ¼

0

0

0

8><>:
9>=>; ð45Þ
The eigenvalues are calculated by taking the determinant of the [Aji] matrix.
AðnÞ11 ðxÞ AðnÞ12 ðxÞ AðnÞ13 ðxÞ
AðnÞ21 ðxÞ AðnÞ22 ðxÞ AðnÞ23 ðxÞ
AðnÞ31 ðxÞ AðnÞ32 ðxÞ AðnÞ33 ðxÞ

��������
�������� ¼ 0 ð46Þ
Solving Eq. (46), the eigenvalues are calculated. The jth estimated eigenvalue, xðnÞj corresponds to n and the
value of n is determined by the following equation:
xðnÞj � xðn�1Þ
j

��� ��� 6 e ð47Þ
where xðn�1Þ
j is the jth estimated eigenvalue corresponding to n � 1 and where e is the tolerance parameter. If

Eq. (47) is satisfied, then the jth eigenvalue, xðnÞj , is obtained. In general, xðnÞj are conjugated complex values,
and can be written as xðnÞj ¼ aj þ ibj. Neglecting the small imaginary part bj, the jth natural frequency, aj, is
found.
5. Results and discussions

At first glance, application of the differential transform method to both the equations of motion and the
boundary conditions seem to be very involved computationally. However, all the algebraic calculations are
finished quickly by using a symbolic computational software. The computer package Mathematica is used
to write a code for the expressions given by Eqs. (42a)–(42c), (43b)–(43d). The natural frequencies are calcu-
lated, the mode shapes are plotted and the effects of the rotational speed, hub radius, slenderness ratio, bend-
ing–torsion coupling and taper ratios are investigated. Additionally, a rotating Timoshenko beam model that
tapers linearly in both planes with respect to the same taper ratio (cb = ch) is created and analysed in the finite
element program, ABAQUS and some illustrative examples which study simpler beam models are found in
open literature and solved in order to make comparisons. Consequently, it is observed that there is a good
agreement between the results.

In Fig. 4, convergence of the first six natural frequencies are introduced. Here, it was necessary to take 50
terms to evaluate up to the sixth natural frequency to five-digit precision. Therefore, the number of the terms,
m, mentioned in Eq. (41) is 50 for the first six natural frequencies. Additionally, here it is seen that higher
modes appear when more terms are taken into account in DTM application. Thus, depending on the order
of the required mode, one must try a few values for the term number at the beginning of the Mathematica
calculations in order to find the adequate number of terms.

In Fig. 5(a)–(e), the first five normal mode shapes of a rotating Timoshenko beam featuring bending–tor-
sion coupling are introduced. Here, it is observed that the first, the second and the fourth normal modes are
dominated by bending while in the third and the fifth normal modes, torsion is dominant.

In Table 1, variation of the first six natural frequencies, x, with respect to the rotational speed, X, is intro-
duced for the beam properties given below. Additionally, the results taken from ABAQUS are included for
validation and it is observed that there is a good agreement between the results of this study and the ABAQUS
results:
GJ 0 ¼ 1:12599� 106 N m2 Iy0 ¼ 1:17187� 10�5 m4 Ia0 ¼ 0:5015 kg m

E ¼ 70� 109 N=m2 kA0G ¼ 5:93654� 108 N qA ¼ 72 kg=m

L ¼ 1 m cb ¼ ch ¼ 0:5 e0 ¼ 9:30� 10�3 m
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For further validation, in Table 2 the results are compared with the ones calculated by Eslimy-Isfahany and
Banerjee [36] for the values given below. In this example, a nonrotating, uniform Timoshenko beam featuring
bending–torsion coupling is considered.
GJ 0 ¼ 9:88� 105 N m2 EIy0 ¼ 9:75� 106 N m2 Ia0 ¼ 8:65 kg m

qA0 ¼ 35:75 kg=m kA0G ¼ 296 154000 N e0 ¼ �0:18 m

L ¼ 6 m cb ¼ ch ¼ 0
In order to investigate the effect of the rotational speed more deeply, the tapered beam natural frequencies
are given in tabular form in Table 3 where the taper ratios are chosen to be cb = ch = 0.4. Here, it is observed
that the natural frequencies increase with the increasing rotational speed parameter, X. The increase in the
frequency due to rotation is 63% for the first bending mode, 16% for the second bending mode, 6% for the
third bending mode and 3.5% for the fourth bending mode. Comparing the percentage increase in the bending
frequencies, it is noticed that the effect of the rotational speed is dominant on the fundamental bending mode
and this effect diminishes rapidly as the frequency order increases. Moreover, the increase of frequency due to
rotation is 1.8% for the first torsion mode while it is 1.6% for the second torsion mode. Therefore, the effect of
rotation on the torsion modes is insignificant even when it is compared with the low bending frequencies.

Effects of the breadth taper ratio, cb,and the height taper ratio, ch, on the natural frequencies are introduced
in Fig. 6 and 7, respectively. Examining these figures, the following results are obtained:

• The breadth taper ratio has an increasing effect on both the bending and torsion natural frequencies.
• The height taper ratio has an increasing effect on the first bending mode. The other bending frequencies

decrease as the height taper ratio increases up to a certain value called the critical taper ratio after which
the natural frequencies reverse their trend of change as reported by Bazoune and Khulief [37] and Khulief
and Bazoune [38].

• The torsional frequencies initially increase with the increasing height taper ratio and then decrease after
some critical taper ratio.

In Table 4, variation of the natural frequencies with respect to different combinations of the taper ratios is
introduced. The results, which are calculated for r = 0.08, �X = 0 and the Poisson ratio, m = 0.3, are compared
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Fig. 5. The normal mode shapes of the rotating coupled Timoshenko beam (—: w; –––: u, - - -,: w).

Table 1
Variation of the natural frequencies with respect to the rotational speed, X

Rotational speed (rad/s)

5 20 50 100

Present ABAQUS Present ABAQUS Present ABAQUS Present ABAQUS

Natural frequencies (Hz)
78.2499 78.267 78.3286 78.341 78.7682 78.750 80.3164 80.192

325.946 326.06 326.02 326.13 326.436 326.52 327.916 327.90
606.437 606.40 606.45 606.42 606.518 606.54 606.764 606.98
791.408 791.89 791.48 791.95 791.883 792.30 793.32 793.54

1247.08 1246.8 1247.11 1246.9 1247.23 1247.1 1247.69 1247.9
1449.38 1450.7 1449.46 1450.7 1449.86 1451.1 1451.3 1452.1
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with the ones calculated by Downs [39]. The torsion frequencies that are not included by Downs [39] are also
added. Here, a very good agreement between the results is observed. In this example, a nonrotating, double
tapered and uncoupled Timoshenko beam model is studied.



Table 2
Natural frequencies of nonrotating, uniform Timoshenko beam featuring bending–torsion coupling

Natural frequencies

Present Ref. [36]

49.4803 49.6
97.0028 97.0

247.631 248.9
350.921 355.6
449.395 451.5
609.273 610.1
790.255 –
929.155 –

Table 3
Effect of the rotational speed parameter on the natural frequencies

X

1 2 3 4 5

Bending frequencies
73.06 75.52 82.42 92.69 105.26

333.55 335.84 342.64 353.68 368.56
831.55 833.78 840.46 851.46 866.60

1531.19 1533.46 1540.23 1551.45 1567.00

Torsion frequencies
544.57 544.95 546.09 547.98 550.63

1208.63 1209.38 1211.65 1215.41 1220.66
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In Table 5, effects of the bending–torsion coupling, the rotary inertia and the shear deformation are inves-
tigated and the results are tabulated for the rotational speed, X = 50 rad/s. Examining Table 5, the following
results are obtained:

• As noted by Subrahmanyam et al. [3], bending–torsion coupling has a decreasing effect on the bending
based natural frequencies (the first, the second, the fourth and the sixth ones) while it has an increasing
effect on the torsion based frequencies (the third and the fifth ones).

• Rotary inertia and shear deformation effects that are results of the Timoshenko Beam Theory have a
decreasing effect on the bending based natural frequencies. Therefore, the bending based natural frequen-
cies of the coupled Timoshenko beam are lower than the natural frequencies of the coupled Euler–Bernoulli
beam. However, rotary inertia and shear deformation have almost no effect on the torsion based natural
frequencies.

• Both the coupling effect and the Timoshenko effects are more significant on the higher modes.

In Table 6, the effect of the hub radius parameter, d, is investigated for several rotational speed values. As
introduced in Table 3, natural frequencies increase with the increasing rotational speed. In Table 6, it is
noticed that this rate of increase becomes larger with the increasing hub radius parameter, d because the cen-
trifugal force, Eq. (14), is directly proportional to the hub radius, R. For a better insight and also in order to
establish the trend, these effects are shown in Fig. 8 where the fundamental natural frequency is plotted for
three different values of the hub radius parameter, d, and for several rotational speed values, X.

In Table 7, effect of the qIyX
2u term is observed. Comparisons are made with Banerjee [35] where the term

is included and Lee and Kuo [34] where it is neglected. As it is seen in the error section of Table 7, percentage
error increases with the increasing rotational speed parameter. Here, the results are given for ch = cb = 0,
d = 0, r = 1/30 and E/kG = 3.059 values.
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Table 4
Variation of the natural frequencies of a nonrotating Timoshenko beam with different combinations of breadth and height taper ratios

Frequency type ch

0 0.3 0.6

cb cb cb

0 0.3 0.6 0 0.3 0.6 0 0.3 0.6

Bending frequencies 3.32404 3.68722 4.28828 3.48689 3.85345 4.46106 3.76227 4.13388 4.74978
3.32400a 3.68723a 4.28829a 3.48689a 3.85346a 4.46107a 3.76228a 4.13389a 4.74979a

16.2889 16.8750 17.7869 15.6409 16.1764 17.0227 14.6448 15.1296 15.9106
16.2890a 16.8752a 17.7871a 15.6411a 16.1766a 17.0229a 14.6449a 15.1297a 15.9107a

36.7073 37.1583 37.9216 34.6621 35.1022 35.8342 31.6239 32.0578 32.7688
36.7078a 37.1588a 37.9221a 34.6625a 35.1026a 35.8346a 31.6243a 32.0582a 32.7693a

58.2778 58.6862 59.4326 55.9271 56.3072 56.9717 51.6225 51.9987 52.6309
58.2788a 58.6872a 59.4336a 55.9280a 56.3081a 56.9726a 51.6225a 51.9995a 52.6316a

Torsion frequencies 22.0510 23.6630 26.1670 27.0340 28.7860 31.4680 35.0790 36.9730 39.7710
– – – – – – – – –
66.1530 66.7360 67.9420 68.1480 68.9700 70.5230 72.9950 73.7300 74.2840
– – – – – – –

a Downs [39].

Table 5
Effects of the bending–torsion coupling, rotary inertia and shear deformation on the natural frequencies

Frequency order Natural frequencies (Hz)

Coupled Timoshenko Uncoupled Timoshenko Coupled Euler

1 78.7682 78.7752 79.0893
2 326.436 326.666 332.302
3 606.518 602.579 606.547
4 791.883 793.103 822.987
5 1247.23 1238.53 1247.57
6 1449.86 1454.32 1522.75

Table 6
Effects of the hub radius and the rotational speed on the natural frequencies

d X

0 10 20 30 40 50

Natural frequencies (Hz)

0 78.2446 78.2656 78.3286 78.4335 78.5801 78.7682
325.941 325.961 326.020 326.119 326.258 326.436
606.437 606.440 606.450 606.466 606.489 606.518

0.2 78.2446 78.2713 78.3513 78.4845 78.6706 78.9091
325.941 325.966 326.042 326.167 326.343 326.569
606.437 606.441 606.454 606.477 606.508 606.548

0.4 78.2446 78.277 78.374 78.5355 78.761 79.0498
325.941 325.972 326.063 326.215 326.428 326.702
606.437 606.442 606.459 606.487 606.527 606.577

0.6 78.2446 78.2827 78.3967 78.5864 78.8512 79.1903
325.941 325.977 326.084 326.263 326.513 326.835
606.437 606.443 606.464 606.498 606.546 606.607
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Table 7
Effect of the qIyX

2u term on the natural frequencies

Natural frequency parameter (l)

X Modes Present Ref. [35] Ref. [34] Error (%)

0 Bending 3.47984 3.4798 3.4798 0.00115
20.5891 – – –
53.3396 – – –

Torsion 22.051 – – –
66.153 – – –

1 Bending 3.64452 3.6445 3.6452 0.01866
20.7375 – – –
53.4941 – – –

Torsion 22.0717 – – –
66.2096 – – –

2 Bending 4.0971 4.0971 4.0994 0.05589
21.1766 – – –
53.9544 – – –

Torsion 222.1336 –
66.379 –

3 Bending 4.75157 4.7516 4.7558 0.08902
21.8883 – – –
54.7112 – – –

Torsion 22.2364 – – –
66.6598 – – –

4 Bending 5.5314 5.5314 5.5375 0.11028
22.8466 – – –
55.7505 – – –

Torsion 22.3793 – – –
67.0500 – – –
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Fig. 8. Effects the hub radius parameter, d and the rotational speed, X on the fundamental natural frequency (d = 0.4, – - -–; d = 0.2, - - -;
d = 0, —).
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6. Conclusion

Using the Hamilton’s principle, the governing differential equations of motion for a cantilevered, rotating,
double tapered Timoshenko beam, featuring coupling between flapwise bending and torsion vibrations, are
derived and solved by applying the differential transform method (DTM). The main contributions of this
study to the literature appear in the derivation of the governing differential equations and they can be listed
as follows:

• In the study of Hodges and Dowell [32], the Euler–Bernoulli Beam Theory is used and in the present study,
their formulation is modified for the Timoshenko Beam Theory and a new expression, c = w 0 � u = O(e2),
is added to their ordering scheme as a contribution to the literature.

• In this study, the missing term, qIyX
2u, appears in the governing differential equations of motion as a result

of the Hamilton’s principle application to the derived energy expressions,. Examining the derivations, it can
be easily understood where it comes from.

• Any study that considers rotating, double tapered, bending–torsion coupled Timoshenko beam is not pres-
ent in open literature. Therefore, in order to validate the calculated results, the beam model studied in this
paper is created and analysed using a finite element program, ABAQUS.

Additionally, the effects of several parameters are examined in this study and the following results are
obtained:

• Increasing rotational speed parameter, X, hub radius parameter, d and breadth taper ratio parameter,
cbhave an increasing effect on all the natural frequencies.

• The height taper ratio, ch, has an increasing effect on the torsional frequencies and the first bending fre-
quency while it has a decreasing effect on the rest of the bending frequencies.

• Bending–torsion coupling has a decreasing effect on the bending frequencies while it has an increasing effect
on the torsional frequencies.

• Rotary inertia and shear deformation effects have a decreasing effect on the bending frequencies while they
have almost no effect on the torsional frequencies.

Appendix A

See Tables A1–A5.
Table A1
Ordering scheme for bending–torsion coupled Timoshenko beam formulation

x
R ¼ Oð1Þ n

R ¼ OðeÞ
w
R ¼ OðeÞ g

R ¼ OðeÞ

u = O(e) w = O(e)

u0

R ¼ Oðe2Þ c = w 0 � u = O(e2)

Table A2
Area integrals for potential energy expressionR R

A dgdn ¼ A
R R

A g2dgdn ¼ Iz
R R

A n2dgdn ¼ IyR R
A gdgdn ¼ Ae

R R
A g2 þ n2

 �

dgdn ¼ J
R R

A ndgdn ¼
R R

A gndgdn ¼ 0



Table A5
DTM theorems used for boundary conditions

x = 0 x = 1

Original B.C. Transformed B.C. Original B.C. Transformed B.C.

f(0) = 0 F(0) = 0 f(1) = 0
P1

k¼0F ðkÞ ¼ 0
df
dx ð0Þ ¼ 0 F(1) = 0 df

dx ð1Þ ¼ 0
P1

k¼0kF ðkÞ ¼ 0
d2f
dx2 ð0Þ ¼ 0 F(2) = 0 d2f

dx2 ð1Þ ¼ 0
P1

k¼0kðk � 1ÞF ðkÞ ¼ 0
d3f
dx3 ð0Þ ¼ 0 F(3) = 0 d3f

dx3 ð1Þ ¼ 0
P1

k¼0ðk � 1Þðk � 2ÞkF ðkÞ ¼ 0

Table A4
DTM theorems used for equations of motion

Original function Transformed function

f(x) = g(x) ± h(x) F[k] = G[k] ± H[k]
f(x) = kg(x) F[k] = kG[k]

f(x) = g(x)h(x) F ½k� ¼
Pk

l¼0G k � l½ �H l½ �
f ðxÞ ¼ dngðxÞ

dxn F ½k� ¼ kþnð Þ!
k! G k þ n½ �

f(x) = xn F ½k� ¼ dðk � nÞ ¼ 0 if k 6¼ n
1 if k ¼ n

�

Table A3
Area integrals for kinetic energy expressionR R

A qdgdn ¼ qA
R R

A qg2dgdn ¼ qIz
R R

A qn2dgdn ¼ qIyR R
A qgdgdn ¼ qAe

R R
A q g2 þ n2

 �

dgdn ¼ Ia
R R

A qndgdn ¼
R R

A qgndgdn ¼ 0
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